Asymmetric Hydride Reduction using a Chiral Aluminium Reagent Modified by a Crowned 2,2'-Dihydroxy-1,1'-binaphthyl

Koji Yamamoto,*,[#] Koji Ueno^b and Koichiro Naemura^b

^a Department of Chemistry, Faculty of Integrated Arts and Science, University of Osaka Prefecture, Sakai, Osaka 591, Japan Deska 591, Japan

^b Department of Chemistry, Faculty of Engineering Science, Osaka University, Toyonaka, Osaka 560, Japan

The chiral aluminium hydride reagent **6** modified by a crowned 2,2'-dihydroxy-1,1'-binaphthyl **4** was found to exhibit high enantiomeric face selectivity towards a variety of prochiral carbonyl compounds including aliphatic ketones.

Increasing interest has been centred on asymmetric hydride reduction of prochiral ketones using a chiral aluminium reagent incorporating axially chiral modifiers.¹ However, in all cases reported, the chiral aluminium reagents have been found to exhibit a high enantiomeric face selectivity so far as α,β unsaturated carbonyl systems. We now found that the crowned 2,2'-dihydroxy-1,1'-binaphthyl **4** is an excellent chiral modifier in asymmetric LiAlH₄ reduction toward a variety of prochiral ketones including aliphatic ketones.*

Condensation of (+)-(S)-3,3'-bis(hydroxymethyl)-2,2'-dihydroxy-1,1'-binaphthyl 1³ with (-)-(S)-2,2'-bis(5-tosyloxy-3oxapentyloxy)-1,1'-binaphthyl 2³ [Bu^tOK-tetrahydrofuran (THF)] afforded the (S,S)-(-)-crown ether 3† {m.p. 206– 207 °C, 27% yield, $[\alpha]_{D}^{23} - 76$ (CHCl₃)}, whose demethylation⁴ [EtSNa, dimethylformamide, 100 °C, 3 h] produced (-)-(S,S)-dihydroxy crown ether 4 {m.p. 192–193 °C, 65% yield, $[\alpha]_{D}^{23} - 61$ (CHCl₃); $\ddagger \delta$ (CDCl₃) δ 7.08–7.95 (m, ArH, 22 H), 4.85 (d, J 11, ArCH₂, 2 H), 4.55 (d, J 11, ArCH₂, 2 H), 5.05 (s, OH, 2 H), 3.93 (m, CH₂O, 4 H) and 3.36 (m, CH₂O, 12 H)}.⁵

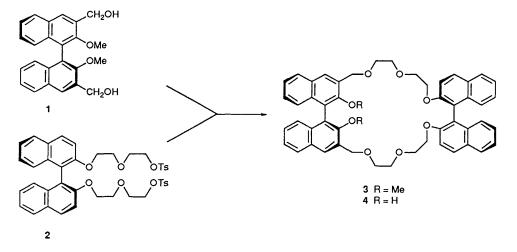
Following the previously described procedure,¹ an asymmetric hydride reduction of prochiral ketones 5 was carried out. To a THF solution (1 mol dm⁻³) of LiAlH₄ (6 mmol) under a nitrogen atmosphere was added ethanol in THF (2.0 ml dm⁻³; 6 mmol) at 0 °C. Then (+)-(*S*,*S*)-4 in THF (0.2 mol dm⁻³; 6 mmol) was added at 0 °C and the mixture was stirred at room temperature for 2 h. The resulting chiral reagent 6 was cooled to 0 °C and to this reagent was added THF solution (1 mol dm⁻³) of the prochiral ketone 5 (2.0 mmol). The mixture was stirred at **Table 1** Asymmetric hydride reduction of prochiral carbonyl compounds 5 with (S,S)-6^{*a*}

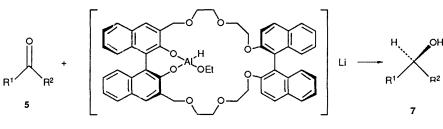
Substrate (R ¹ COR ²)			Alcohol 7		
	Conditions Temp. Time (°C) (h)		Isolated yield (%)	[α] ²³ / (c, solvent)	Enantiomeric excess (%) (Config. ^a)
$R^{1} = Ph,$ $R^{2} = Me$	0	24	76	-38.3 (1.45, C, H ₁₀)	89 (S) ^b
	-40	48	54	-37.5 (1.21, C ₅ H ₁₀)	87 (<i>S</i>) ^{<i>b</i>}
$R^{1} = Ph,$ $R^{2} = CH_{2}Ph$	0	24	77	+ 50.8 (1.55, EtOH)	91 (<i>S</i>)°
	-40	48	52	+ 49.7 (1.10, EtOH)	89 (S)°
$R^{1} = CH_{2}Ph,$ $R^{2} = Me$	0	24	75	+36.8 (1.88, C ₆ H ₆)	88 (S) ⁴
$R^{1} = Bu^{i},$ $R^{2} = Me$	0	24	78	+ 17.4 (2.21, EtOH)	85 (S) ^e

^a The reaction was carried out as described in text. ^b Based on $[\alpha]_D^{21}$ -43.1 (C₅H₁₀) (ref. 6). ^c Based on $[\alpha]_D^{18}$ +55.9 (EtOH) (ref. 7). ^d Based on $[\alpha]_D^{20}$ +41.8 (C₆H₆) (ref. 8). ^e Based on $[\alpha]_D^{20}$ +20.5 (EtOH) (ref. 8).

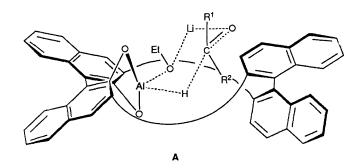
this temperature for 24 h and then quenched by the addition of HCl (2 mol dm⁻³) at 0 °C. Extractive work-up with ether followed by evaporative distillation afforded the results summarized in Table 1.§

Inspection of Table 1 reveals the following: (a) the chiral hydride reagent 6 exhibits a high enantiomeric face selectivity towards both aromatic and aliphatic ketones at 0 °C and (b) the products 7 invariably have the S-configuration.


The configuration of the alcohol 7 formed by the reduction with chiral hydride reagent 6 is dependent upon the configuration of the six-membered, chelating transition state A.⁹ Inspection of Corey-Pauling-Koltun (CPK) space-filling molecular models suggests that the ether bridge with a chiral


^{*} The highly enantioselective borane reduction of aliphatic ketones catalysed by oxazaborolidines has been reported by Corey and his group.²

[†] Satisfactory analytical and spectroscopic data have been obtained for all new compounds.


[‡] Throughout $[\alpha]_D$ values are recorded in $10^{-1} \text{ deg cm}^2 \text{ g}^{-1}$.

[§] The chiral modifier 4 was recovered without any noticeable loss in yield and optical purity.

(*S*, *S*)**–6**

binaphthyl unit plays an important role in enantiomeric face selectivity. The diastereoisomeric transition state A on steric grounds would appear to be more stable and the sterically hindered group (R^1) should occupy the axial position in the transition state, in accord with the observed enantioselectivity.

References

- R. Noyori, I. Tomino and Y. Tanimoto, J. Am. Chem. Soc., 1979, 101, 3129; R. Noyori, I. Tomino and M. Nishizawa, J. Am. Chem. Soc., 1979, 101, 5843; N. Nishizawa and R. Noyori, Tetrahedron Lett., 1980, 2821; 1981, 247; K. Yamamoto, H. Fukushima and M. Nakazaki, J. Chem. Soc., Chem. Commun., 1984, 1490; H. Suda, S. Kanoh, M. Umeda, M. Ikka and M. Motori, Chem. Lett., 1984, 899.
- 2 E. J. Corey, R. K. Bakshi and S. Shibata, J. Am. Chem. Soc., 1987, 109, 5551.

- 3 E. P. Kyba, W. G. Gokel, F. de Jong, K. Koba, L. R. Sousa, M. G. Siegel, L. Kaplan, G. D. Y. Sogah and D. J. Cram, *J. Org. Chem.*, 1977, **42**, 4173.
- 4 G. I. Feutrill and R. N. Mirrington, Tetrahedron Lett., 1970, 1327.
- 5 Presented in part at the 61th Annual Meeting of the Chemical Society of Japan, March 29, 1991, Abstracts II, p. 1135.
- 6 A. W. Burgstahler, D. E. Walker, Jr., J. P. Kuebrich and R. L. Schowen, J. Org. Chem., 1972, 37, 1272.
- 7 G. Berti, F. Bothari, P. L. Farrarini and B. Hacchia, J. Org. Chem., 1965, 30, 4091.
- 8 R. H. Pickard and J. Kenyon, J. Chem. Soc., 1911, 45; 1914, 1115.
- 9 E. C. Ashby and J. R. Boone, J. Org. Chem., 1976, 41, 2890, 5524.

Paper 1/03079E Received 21st June 1991 Accepted 27th July 1991